skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "ISELI, ANNINA"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Every Thurston map$$f\colon S^2\rightarrow S^2$$on a$$2$$-sphere$$S^2$$induces a pull-back operation on Jordan curves$$\alpha \subset S^2\smallsetminus {P_f}$$, where$${P_f}$$is the postcritical set off. Here the isotopy class$$[f^{-1}(\alpha )]$$(relative to$${P_f}$$) only depends on the isotopy class$$[\alpha ]$$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the mapfcan be seen as a fixed point of the pull-back operation. We show that if a Thurston mapfwith a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying$$2$$-sphere and construct a new Thurston map$$\widehat f$$for which this obstruction is eliminated. We prove that no other obstruction arises and so$$\widehat f$$is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem. 
    more » « less